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VELOCITY LAG OF SOLID PARTICLES IN OSCILLATING GASES

AN IN GASES PASSING THROUGH NORMAL SHOCK WAVES

by Barry R. Maxwell* and Richard G. Seasholtz

Lewis Research Center

SUMMARY

The velocity lag of micrometer size spherical particles is theoretically determined

for gas-particle mixtures passing through a stationary normal shock wave and also for

particles embedded in an oscillating gas flow. The particle sizes (0. 125 to 2g1m radius)

and densities (0. 5 to 3 g/cm3 ) chosen are those considered important for laser-Doppler

velocimeter (LDV) applications. The governing equations for each flow system are for-

mulated. The deviation from Stokes flow caused by inertial, compressibility, and rar-

efaction effects is accounted for in both flow systems by use of an empirical drag coef-

ficient. In the shock wave study the effects of particle mass loading and convective heat

transfer are included. The graphical results presented characterize particle tracking as

a function of system parameters.

INTRODUCTION

Laser-Doppler velocimetry (LDV) is an optical technique for determining the veloc-

ity of flowing fluids by measuring the velocity of tracer particles entrained in the gas

rather than by measuring the velocity of the gas molecules themselves. The LDV tech-

nique is of considerable importance in gas dynamic measurements because it is unneces-

sary to introduce hardware into the flow system. Therefore, problems associated with

mounting conventional probes, their disturbance to the flow field and their thermal de-

struction by hot gases are eliminated.

Since the LDV system measures only the motion of small tracer particles carried by

the gas, the accuracy is limited by the accuracy with which the particles follow the gas

flow. Therefore, it is important to know how accurately the particles track the gas flow,

*Assistant Professor of Mechanical Engineering, Bucknell University, Lewisburg,
Pennsylvania.



and careful consideration must be given to the motion of the particles relative to the car-
rier gas.

The objective of this study is to determine the velocity lag of spherical particles with
sizes (0. 125 to 2pm rad) and densities (0. 5 to 3 g/cm3 ) that are of particular interest in
LDV applications. Previous studies of particle tracking for LDV applications have either
been restricted to creeping flow (refs. 1 and 2), or to a limited range of system param-

eters (ref. 3). Other studies (refs. 4 and 5) of gas-particle flows have been conducted,
but the results do not generally cover the range of parameters of interest for LDV work.

Two flow systems are analyzed and the velocity lag of the particles relative to the

gas is determined as a function of the system parameters. The first flow system is a
gas -particle mixture passing through a normal shock wave. The analysis examines the
velocity and temperature lags between the gas and particles in the relaxation region
behind the shock disturbance. Temperature lags are explored because of the changing
temperatures downstream from the shock wave and the effect of such changes on the
dynamic behavior of the gas and particles. The second system examined is an oscil-
lating gas-particle flow. The analysis determines the particle velocity lag as a function
of particle properties and the amplitude and frequency of the carrier gas oscillations.
The response of a particle to an oscillating flow as a function of frequency is useful in
determining the limitations of LDV in turbulence measurements.

The research approach of this study is (1) to define the assumptions regarding the
gas-particle system, (2) to formulate the equations governing the behavior of the fluid
systems, and (3) to define the significant system parameters and conduct a parametric
study to determine the response of the systems to their variation. Subsequent sections
of this report discuss these items in detail and report the results and conclusions ob-
tained.

ANALYSIS

Simplifying Assumptions

The simplifying assumptions of this study are
(1) The state of the carrier gas is described by the perfect gas law.
(2) The particles are spherical, noninteracting, and uniformly distributed within

the carrier gas.

(3) Thermal (Brownian) motion of the particles does not contribute to the system
pressure, implying that the number of particles per unit volume is small compared with
the number of molecules.

(4) Particle mass transfer by evaporation or condensation is excluded from consid-
eration.
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(5) The total energy content of the two-phase system is constant, and the dissipa-
tive term in the conservation of energy equation is neglected.

(6) The flow systems are not influenced by solid boundaries.
(7) Each particle, because of its small size, is characterized by uniform temper-

ature.

(8) The particles thermally track the gas phase of the oscillating flow system.
(9) Flow through the shock flow system is steady and one-dimensional.
(10) Viscous effects are neglected except in gas-particle interactions.
(11) The volume occupied by the particles is neglected when calculating state prop-

erties of the gas.

These assumptions are used to formulate the basic equations governing the behavior
of the gas-particle flow in both flow systems and are regarded as valid for most LDV
applications employing naturally occurring or artificially injected contaminants.

Governing Equations

The equations governing the kinematic and thermal behavior of a gas-particle sys-
tem are the equation of state and the laws of conservation of mass, momentum, and
energy of the system. These equations are formulated in a manner consistent with the
previous governing assumptions. Definition of symbols is included in the appendix.
The equation of state is

P = pRT (1)

where P, p, R and T denote pressure, mass density, gas constant, and temperature,
respectively. The subscript g denotes the gas phase. The conservation of mass for
the gas phase and the particles is

mg = PgUg = constant (2)

and

mp = P up = constant (3)

where mn and u denote mass flux and velocity, respectively, and ps is the particle
mass per unit volume of gas given by

Ps = -rrnp
3 pp

where np is the particle number density. Conservation of momentum for the gas-
particle mixture is given by
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du du dP
gUg + Psu +dP 0 (4)

g dx SPdx dx

and is obtained by combining the momentum equations for the particles and gas phase,
thus eliminating the common interaction term. The first and third terms are due to the
gas phase, and the second term is attributed to the presence of the particles.

The equation of motion for a single spherical particle in a fluid without external
force fields is given in reference 6 as

du Cdu du\
A 2 m'dP m' p

m dt 2 9p p dx 2 \dt dt/

du du
g_ P

+ 6r2 ( p)1/2 d d (5)

(t- 7)1/2

where t0

m = 4rr 3 Pp
P 3

m' = 4nr 3 P
3

dP _ g dug

dx dt

and CD, ti, r, and A denote the viscous drag coefficient, viscosity, particle radius,
and cross sectional area, respectively. Equation (5) has been used for creeping flow in
several previous particle flow studies (refs. 1 and 2). This equation equates the force to
accelerate a particle to the following fluid effects in order of their appearance in the
equation.

(1) The viscous drag on the particle expressed in terms of an empirically deter-
mined drag coefficient CD

(2) The force on the particle due to the pressure gradient in the surrounding fluid
(3) The force required to accelerate the mass of fluid which surrounds the particle

and moves with it (This term is commonly referred to as the apparent mass
term and is viewed as an addition to the inertia of the particle, the increment
being one-half (ref. 7) the mass of the fluid displaced.)

(4) The Basset history integral (Basset force, ref. 8), which accounts for the devi-
ation of the flow from steady state and becomes substantial when the particle
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is accelerated at a high rate
Conservation of energy for the gas-particle mixture as a whole, thus eliminating

interaction terms, is given by

dT du + dT du
pu +u +pu c +u = 0 (6)gg gd +Ug p s p dx

where cs and c denote particle and gas specific heats, respectively. An energy
balance on a particle yields

dT Nu k
p 3 g (Tg-Tp) (7)UP dx 2 2 p

psr

where kg is the gas thermal conductivity and Nu is an empirically determined Nusselt
number defined as Nu = 2.rh/k (where h is the convective heat transfer coefficient).

Equation (7) considers convection heat transfer only since particle temperatures are
sufficiently low to preclude significant radiation heat loss.

Shock Wave Flow System

Consider a homogeneous mixture of a gas and particles that passes through a sta-
tionary normal shock wave. It is assumed that the gas-particle mixture is in velocity
and thermal equilibrium upstream of the shock disturbance. As the mixture passes
through the shock, the gas experiences a compression and a velocity decrease consistent
with normal gas-dynamic shock relations. Because the particles are large relative to
molecular dimensions, they are unable to accommodate themselves to the decreased
velocity and increased temperature of the gas immediately downstream from the shock.
Therefore, a relaxation zone of finite length exists behind the shock during which mo-
mentum and energy exchange cause a gradual reestablishment of thermal and kinematic
equilibrium between the phases. Typical velocity and temperature distributions (ref. 4)
of the gas-particle mixture are shown qualitatively in figure 1. The velocity and tem-
perature relaxation zones are characterized by the relaxation lengths Xv and XT*
These lengths are defined as the distances at which the appropriate particle properties
approach to within 1 percent of the corresponding gas properties and are functions of the
gas-dynamic and thermophysical properties of the gas-particle system. The intent of
this portion of the study is to investigate the extent of the relaxation, or equilibration,
zone and to determine how it varies as a function of system properties. Knowledge of
the length of the velocity equilibration zone is important for LDV applications downstream
of a known shock disturbance because of the velocity lag of tracer particles within this
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zone. Conversely, measurement of the relaxation length may be used to determine
particle sizes if the properties of the shock are known.

It is convenient to introduce the following dimensionless variables, where the sub-

script 1 denotes conditions upstream of the shock, the subscript 2 conditions immedi-
ately downstream, and the subscript 3 conditions far downstream, where velocity and
thermal equilibrium are achieved:

Tg u m u 1
Tg T 1  g - a MI= 1

g

T u c
W =-P = =_s
P T 1  P a1  cg

where a denotes the sonic velocity and a represents the particle mass loading ratio.
Equations describing the velocity and temperature distributions in the relaxation zone
are obtained by introducing these variables into governing equations (1) to (7).

An equation for the particle velocity variation downstream of the shock is obtained
from equation (5) by neglecting the pressure gradient, apparent mass, and Basset inte-
gral terms. This simplification is justified in steady-state gas-dynamic flows whose
properties are changing very gradually or when the particle mass density is much larger
than the gas density (ref. 1). Therefore, equation (5) reduces to

dup 3 CDr - -)2 (8)
p 8 _ 2 (8)

dx 8 u

The equation for the particle temperature variation is obtained from equation (7) and is

dT Nuk - -
p

3  
g TT(

dx 2 p 2 p prTp) (9)2

An equation for dT /dx is obtained by writing the equation of state for the gas (eq. (1))
in terms of the dimensionless variables and differentiating with respect to x to obtain

dP = M 1  dT g dg (10)
dP 1 - (10)dx g dx g dx
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Substituting this expression for dP/dx into equation (4) yields

dTg d di
'-_ (11)

x dx- dx

where y denotes the ratio of specific heats for the gas phase. To obtain an equation
for du /dx equation (11) is used to eliminate dT /dx from equation (6) giving

d _Y g g - a(.y 1)U 2 - ap
_ (Ix K (12)

dx

( g )

where the relations a2 = yRT1 and yR = c (y - 1) have been used. Equations (8), (9),
(11), and (12) constitute a system of coupled, first-order, nonlinear ordinary differential

equations whose simultaneous solution yields the variation of ig, ip, Tg, and Tp as a

function of stream-length x.

The starting conditions for the gas phase are the conditions immediately behind the

shock and are provided by the Rankine-Hugoniot (ref. 9) equations for a shock in the gas
phase alone. Accordingly,

T (0)T2 = 1 [2 (M2 - 1) +M E2M 2 - 1) 1 (13)

T1  M1~

u2  2 [(y-1)M + 2
ig()= a T 2 (14)

a 1 2yM2-(y-1)

where 2 = (y - 1)/(y + 1). Since the particles pass through the shock without change

in their velocity and temperature, the particle phase starting conditions are

T p(0) = 1(15)

up(O)= M 1  (16)

7



Oscillating Flow System

Consider a gas-particle system in which the gas is undergoing periodic velocity
fluctuations characterized by a constant amplitude and a single fixed frequency. Because
the size and mass of the particles are large relative to molecular quantities, the par-
ticles are unable to track the gas for all flow conditions, and a phase and velocity lag
develops between the particles and the carrier gas. Particle tracking may be charac-
terized by the amplitude ratio (u )max/u where (u p)max and u denote the maximum
velocities attained by the particles and gas, respectively, in the oscillating flow system.
It is of interest to examine the sensitivity of this amplitude ratio to the frequency and
amplitude of oscillation and to the system thermophysical properties.

Although no real flow system is characterized by oscillations at a single fixed fre-
quency, it is important to understand the behavior of such a system in order to effec-
tively analyze a turbulent flow system oscillating over a broad spectrum of frequencies.

The general equation of motion of a particle in a fluid is given by equation (5), and
the oscillating flow field is described by

ug = u sin 27ft (17)

where f and t denote frequency and time. For purposes of this study the apparent
mass term and the pressure gradient term of equation (5) are retained, but the Basset
history integral term in neglected. Deletion of the Basset force is justified (refs. 1 and
2) for flow systems with the range of particle-to-gas density ratios and frequencies
encountered in this study. Introducing equation (17) into equation (5), deleting the Basset
integral, and simplifying yield

du CDpg A (u sin wt - u )2 +- m'wu cos ot
p 2 2 (18)

dt m'
m + --

P 2

where w = 27f. Equation (18) is a nonlinear ordinary differential equation whose solu-
tion yields the variation of u as a function of time. The initial condition is u (0) = 0.
Equation (18) is numerically integrated for several conditions of physical interest which
are subsequently defined in the Parametric Study section of this report.

Empirical Drag and Heat Transfer Laws

The rate of momentum and energy transfer between phases of a two-phase flow

8



system is fundamental to the understanding and analysis of such a system and is typi-
cally characterized in terms of a drag coefficient and Nusselt number. In general, CD
and Nu depend on particle geometry, Reynolds number, Mach number, and Knudsen
number. There has been some theoretical work and a great deal of experimental work
conducted to determine the appropriate functional dependence on these parameters, but
the literature often indicates a wide discrepancy in the reported results.

In the absence of reliable drag data, the drag coefficient is frequently assumed to

be given by the classical Stokes drag law

24
C D - (19)

Re

where Re = 2rp (ug - u p)/1 is the Reynolds number. The Nusselt number is usually

approximated by an expression obtained by Knudsen and Katz (ref. 10) for flow around a

single sphere:

Nu = 2 + 0. 6 Prl/3Re1 /2 (20)

where Pr = gic /k is the gas phase Prandtl number.

Although it is most convenient to use Stokes law for the drag coefficient, it becomes

increasingly unrealistic for Reynolds numbers above approximately 1. 0 and in flows

where rarefaction and inertial effects are significant. When conditions are known to

deviate from Stokes flow, investigators have used various empirically determined drag
coefficients to account for the deviation. Since differences appear in the literature

regarding the most appropriate drag coefficient for a given flow system, any momentum

exchange analysis is only as valid as the drag coefficient employed. Differences are
generally attributed to such phenomena as rarefaction, compressibility, acceleration,
electrostatic charge effects, unsteady nature of the flow, etc.

Probstein and Fassio (ref. 11) present an empirical drag expression which approx-
imates the standard drag curve for a sphere:

CD = aRe-n (21)

where for Re < 1

a= 24 and n = 1

for 1 < Re < 103

a = 24 and n = 3
5
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and for Re > 103

a= 0.44 and n= 0

Alternate empirical expressions frequently used by investigators are (refs. 3 and 12)

CD = 0.48 + 28 Re - 0 .85 (22)

and (ref. 13)

CD = 27 Re - 0 . 8 4  (23)

The gas-dynamic flow regimes frequently encountered by micrometer size particles
require appropriate corrections to account for inertial, rarefaction, and compressibility
effects. Carlson and Hoglund (ref. 14) present a drag expression that corrects the
Stokes law for these effects and is, therefore, usable throughout the continuum, slip and
transition regimes. The expression is

(1+ 0. 15 Re687 e -0.427 3(24)
SM 4. 63 0.88

CD =24 6  (24)
Re 1 + M [3.82 + 1. 28 exp(-1.2Re)]

Re M

where the term in the bracket accounts for deviation from Stokes flow caused by inertial,
compressibility, and rarefaction effects.

Equations (24) and (20) are used in this study for the drag coefficient and Nusselt
number. This selection is based on their broad range of applicability and their wide
acceptance in the literature. However, in order to assess the sensitivity of the flow
system to variations in drag coefficient assumptions, several calculations are performed
where the only variable is the drag law. Results of this analysis are discussed later in
this report.

PARAMETRIC STUDY

When analyzing any gas-particle flow system, the relations between the many
variables involved are complicated, and the consequences of varying the system prop-
erties are not readily apparent. In order to understand the behavior of both the shock
flow system and the oscillating flow system, the significant parameters that influence
each system are defined and then systematically varied over ranges of interest for LDV
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applications. The limits of the parametric study are specified below for each

flow system.

Shock Wave Flow System

The behavior of the shock flow system is governed by equations (8), (9), (11), and
(12). The parameters that influence the system are the Mach number M 1 , specific
heat ratio 0, particle radius r, mass density pp, and mass loading a. The influence
of these parameters on the relaxation zone structure is explored by numerically inte-
grating the governing equations while varying each parameter and holding the remaining
ones constant. The cases examined and the corresponding values of the parameters are
summarized in table I. The range of values investigated for each of the parameters was
selected in order to correspond to typical values encountered in most LDV applications
(refs. 15 and 16). Particle mass loading ratios of a = 0 and a = 0. 2 were chosen to
represent the extremes of negligible and heavy particle mass fractions. Momentum and
energy exchange are characterized by equations (24) and (20), respectively, and initial
gas pressure and temperature are 1 atmosphere and 289 K (5200 R).

In addition, the sensitivity of the system to a change in empirical drag law is in-
vestigated by fixing the parameters in table I and using equations (19) and (21) to (24)
separately to characterize the momentum exchange.

Oscillating Flow System

The parameters that directly influence the oscillating system are particle radius,
mass density, and the amplitude and frequency of gas oscillation. The range of values
considered in this study is summarized in table II.

Equation (18) is numerically integrated for each condition defined in table II, and the
results are graphically summarized later in this report. The gas pressure and temper-
ature are fixed at 1 atmosphere and 289 K (5200 R), respectively, and the drag coeffi-
cient is given by equation (24).

RESULTS

Shock Wave System

The results of numerically integrating equations (8), (9), (11), and (12) with the
input values summarized in table I are presented in figures 2 to 8.

Figure 2 demonstrates the typical structure of the relaxation zone in nondimen-
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sionalized form. The decrease of gas velocity in the equilibration region is attributed
to the positive temperature gradient of the particles. The thermal influence of the par-
ticles on the gas velocity is observed in equation (12). Although the structure is plotted
for a particle radius of 1 micrometer and a density of 1 gram per cubic centimeter, it
was found that this nondimensionalized structure is displayed (within 1 percent) for all
other radii and densities examined in cases 1 and 2 (table I) when a = 0. 2. When a = 0
there is a negligible number of particles present in the flow to alter the dynamic and
thermal behavior of the gas, and, as equations (12) and (11) indicate, the gas velocity and
temperature are equal to the values dictated by equations (14) and (13) throughout the
equilibration zone.

The influence of particle radius and mass density on the velocity and thermal relax-
ation lengths is demonstrated in figures 3 and 4 for particle mass loading ratios of
a = 0 and a = 0. 2. The results indicate that an increase in either radius or density
results in a significant extension of the relaxation zones and that the relaxation lengths
are relatively insensitive to particle loading. Also, the particles equilibrate more
rapidly to the gas temperature than to the velocity, thus indicating that energy is trans-
ferred more effectively than momentum between the phases.

Figure 5 shows the variation of the relaxation lengths as a function of the particle
mass loading ratio and indicates that an increase in mass loading results in a decrease
in the relaxation zone lengths. This trend is attributed to the fact that additional energy
and momentum are extracted from the gas by the solid particles as their mass fraction
increases. The influence of the Mach number on the relaxation lengths is shown in fig-
ure 6 for mass loading ratios of a = 0 and a = 0. 2. When the particle mass loading
is zero, the relaxation lengths became maximum at approximately Mach 1. 3 and then
decrease as the Mach number increases. Although not observable in figure 5, the max-
imum equilibration length for the a = 0. 2 case would occur below Mach 1. 1. The de-
crease of the relaxation lengths toward zero as the Mach number approaches 1 is a re-
sult of the way the relaxation lengths were defined (e. g., when the gas velocity changes
less than 1 percent the relaxation lengths are 0).

Figure 7 presents the relaxation lengths as a function of = s/Cg for mass load-
ing ratios of a = 0 and a = 0. 2. The results indicate that an increase in P extends
both relaxation zones and that the thermal equilibration length is the most sensitive to
a change in 0. An increase in 0 results in additional thermal energy required from
the gas in order to achieve a given increase in particle temperature. This results in
slightly lower values for postshock equilibrium velocity and temperature and in an in-
crease in the equilibration lengths.

Figure 8 compares the relaxation zone structure as a function of different drag law
assumptions. The particles respond least rapidly when Stokes flow is assumed, and the
response for the various empirical laws is generally similar. It is also evident that the
particle velocities for the a = 0 case are significantly higher than when particles are
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present in the flow. This is due to the fact that when a = 0 there are no particles

assumed available to extract momentum from the carrier gas. Therefore, the kinetic

energy of the gas remains unchanged downstream from the shock (eq. (12)), and the few

particles present achieve the highest velocity, consistent with the drag law, throughout

the flow field.

Oscillating Flow System

The results of numerically integrating equation (18) for the range of values given in

table II are presented in figures 9 to 13.

Figures 9 and 10 represent typical examples of the particle response to the oscil-

lating flow field over a several cycle period. The gas and particles start from rest;

the motion of the gas is described by equation (17) and (Up/uo)max is determined after

apparent equilibrium is reached in the particle oscillation.

Figure 11 demonstrates the effect of particle radius on particle trackability. It is

seen that frequency response for small particles (0. 5 pm or less) is quite good out to a

frequency of 10 kilohertz but falls off at higher frequencies. As expected, particle

tracking is significantly decreased as particle size increases.

The effect of particle mass density on particle response is presented in figure 12.

At high frequencies an increase in particle density causes a significant decrease in

particle tracking; at lower frequencies, tracking is less sensitive to a density increase.

Figure 13 shows the effect of gas velocity amplitude on particle response, and it is

seen that particle tracking is sensitive to velocity amplitude at frequencies above

10 kilohertz. Because of an increase in the drag coefficient, an increase in u0 results

in reduced velocity lag at high frequencies and, therefore, better particle tracking.

CONCLUSIONS

The numerically obtained results of this study provide justification for the following

conclusions:

1. The relaxation zone behind a normal shock wave is lengthened whenever the par-

ticle radius or mass density increases or whenever the mass loading ratio or Mach

number (for M 1 > 1. 3) is reduced.

2. Particle size and mass density have negligible effect on the nondimensional ve-
locity and temperature in the normalized equilibration zone when the Mach number and

particle mass loading are fixed.
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3. For values of the particle-to-gas specific heat ratio less than approximately
1. 5, thermal equilibration occurs before velocity equilibration in the shock flow system.
But the thermal equilibration length approaches and exceeds the velocity length as the
particle specific heat is increased.

4. Particle tracking in an oscillating gas is improved whenever particle size, mass
density, or gas frequency is reduced or when the gas velocity amplitude is increased.

The results obtained in this study should provide useful data for establishing guide-
lines for the application of las er-Doppler techniques to gas -dynamic velocity measure-
ments.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 11, 1973,
501-24.
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APPENDIX - SYMBOLS

A particle cross-sectional area, m2

a sonic speed, m/sec

CD drag coefficient

cg gas specific heat at constant pressure, J/kg. K

c s  particle specific heat, J/kg" K

f gas frequency, Hz

h convective heat transfer coefficient, J/hr. m2* K

k gas thermal conductivity, J/hr- m" K

M Mach number

m mass flow rate, kg/sec m2

Nu Nusselt number, = 2 rh/kg

np particle number density, particles/m 3

P pressure, N/m 2

Pr Prandtl number, = ICg/kg

R gas constant, J/kg'k

Re Reynolds number, 2rpu/ji

r particle radius, meters

T temperature, K

T dimensionless temperature = T/T 1

t time, sec

u velocity, m/sec

U dimensionless velocity = u/ul

x distance, m

a particle mass loading ratio, m p/m

p ratio of particle to gas specific heats, c s/c

y ratio of specific heats for gas phase

15



AT temperature relaxation length, m, distance corresponding to point where T
approaches to within 1 percent of Tg

X velocity relaxation length, m, distance corresponding to point where u
approaches to within 1 percent of u

I viscosity, N- sec/m 2

p mass density, kg/m 3

Ps particle mass per unit volume of gas

w angular velocity, rad/sec

Subscripts:

g gas

p particles

1 upstream from shock

2 immediately downstream from shock
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TABLE I. - SHOCK FLOW PARAMETRIC VALUES

Case Particle Particle Particle Mach Specific
radius, density, mass number, heat

r, pp, loading, M 1  ratio,
Am g/cm 3  

01 _

1 0.125,0.25,0.5, . . . ,1 1 0, 0.2 1.6 1.125
2 0.5 0.5,1,1.5, . . . ,3 0, 0.2 1. 6

3 1 0,0.05,0.1,0.15, . . . ,1 1.6
4 1 0, 0.2 1.1,1.2, . . . 2
5 1 0, 0.2 1.6 0.5,1, . . . , 3

TABLE H. - OSCILLATING FLOW PARAMETRIC VALUES

Case Particle Particle Gas Gas velocity

radius, density, frequency, amplitude,

r, pp, f, u 1 ,

4m g/cm3  kHz m/sec (ft/sec)

1 0. 125,0.25,0.375,0.5,0.75, 1,2 1 0.5 - 128 15.2(50)

2 0.5 0.5,1,1.5, . 3 .5- 128 15.2(50)

3 .5 1 . 5- 128 0.304,1.52,15.2,30.4, . . . ,91.4

(1, 5, 50, 100, . . . ,300)
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Figure 1. - Qualitative velocity and temperature
distributions of gas-particle mixture across
normal shock wave.
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Figure 2. - Dimensionless temperature and
velocity distributions behind stationary nor-
mal shock wave. Upstream pressure, 1 at-
mosphere; upstream temperature, 289 K;
upstream Mach number, 1.6; particle mass
loading ratio, 0. 2; ratio of particle to gas
specific heats, 1.125; particle mass density,
1 gram per cubic centimeter; particle ra-
dius, 1 micrometer.
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Figure 3. - Shock wave system relaxation lengths Particle density, ,
as function of particle radius. Upstream pres- Figure 4. - Shock wave system relaxation lengths as function of
sure, 1 atmosphere; upstream temperature, particle mass density. Upstream pressure, 1 atmosphere; up-
289 K; upstream Mach number, 1.6; particle stream temperature, 289 K; particle radius, 0.5 micrometer;
mass density, 1 gram per cubic centimeter. upstream Mach number, 1.6.
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Figure 5. - Shock wave system relaxation lengths as
function of particle mass loading ratio. Upstream
pressure, 1 atmosphere; upstream temperature, 289 K;
upstream Mach number, 1.6; particle radius, 0.5 mi-
crometer; particle mass density, 1 gram per cubic
centimeter; ratio of particle to gas specific heats,
1.125.
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Figure 6. - Shock wave system relaxation lengths as function of Mach
number. Upstream pressure, 1 atmosphere; upstream temperature,
289 K; particle density, 1 gram per cubic centimeter; particle radius,
0. 5 micrometer.
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Figure 7. - Shock wave system relaxation lengths as function of
particle-to-gas specific heat ratio. Upstream pressure, 1 at-
mosphere; upstream temperature, 289 K; upstream Mach num-
ber, 1.6; particle radius, 0.5 micrometer; particle mass den-
sity, 1 gram per cubic centimeter.
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Figure 8. - Influence of drag law on dimensionless velocity dis-
tribution behind normal shock wave. Upstream pressure,
1 atmosphere; upstream temperature, 289 K; upstream Mach
number, 1.6; particle mass density, 1 gram per cubic centi-
meter; particle radius, 0.5 micrometer.
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Figure 9. - Particle response to oscillating flow field. Particle radius, 0.5 mi-
crometer; particle mass density, 1 gram per cubic centimeter; maximum gas
velocity, 15.2 meters per second; gas frequency, 32 kilohertz.
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Figure 10. - Particle response to oscillating flow field. Particle radius,
1 micrometer; particle mass density, 1 gram per cubic centimeter;
maximum gas velocity, 15.2 meters per second; gas frequency,
32 kilohertz.
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Figure 11. - Influence of particle size on particle tracking in oscillating flow
field. Particle mass density, 1 gram per cubic centimeter; maximum gas
velocity, 15. 2 meters per second.

Particle
densil

,8 gcm

00.5

o .6 3

P 2.5-

.4 2-

2_ 1.5

> .2-

o , 1 ,11 , 1 , I ,1 , I , I l i I
.4 .6 1 2 4 6 10 20 40 60 100 200

Frequency, kHz

Figure 12. - Influence of particle mass density on particle tracking in an os-
cillating flow field. Particle radius, 0.5 micrometer; maximum gas velocity,
15. 2 meters per second.
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Figure 13. - Influence of maximum gas velocity on particle tracking in an
oscillating flow field. Particle radius, 0.5 micrometer; maximum gas ve-
locity, 1 gram per cubic centimeter.

26 NASA-Langley, 1974 E 7653


